National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Inhibitors of rhomboid proteases as tools for cell biology
Kuzmík, Ján ; Stříšovský, Kvido (advisor) ; Hlouchová, Klára (referee)
Rhomboid intramembrane serine proteases cleave polypeptide chains within lipid bilayer. Rhomboid proteases were originally discovered in Drosophila melanogaster where they regulate ontogenesis of the fly, but they are present in all domains of life. Nowadays, various diseases, such as malaria, amoebiasis, Parkinson's disease, various tumour malignancies, and diabetes, have been linked with rhomboid proteases. However, natural substrates and function of most rhomboids remain elusive. Cell biology tools are needed for unravelling functions of rhomboids, as well as for potential pharmacological applications, and this together fuels the effort to develop specific rhomboid inhibitors. The inhibitors known to date always bear an electrophilic warhead attacking the nucleophilic serine of the atypical serine-histidine catalytic dyad of rhomboid. From the various developed inhibitors, peptidyl -ketoamides substituted at the ketoamide nitrogen by hydrophobic groups, discovered in our laboratory, hold the biggest potential. They are potent, reversible, selective, tunable, and are built around a pharmacophore already approved for medical use. Here, I set out to improve peptidyl -ketoamides by exploring the chemical space in the active site of rhomboid and testing substituents of the ketoamide nitrogen of increasing...
Proximity proteome of intramembrane serine protease RHBDL4
Boháčová, Šárka ; Stříšovský, Kvido (advisor) ; Brábek, Jan (referee)
Regulated intramembrane proteolysis is an interesting process involved in a multitude of cellular pathways. Enzymes which catalyse this are termed intramembrane proteases (IMPRs), cleaving proteins passing through the membrane within their transmembrane domain. Rhomboid proteases are serine IMPRs. They are widely distributed among organisms and evolutionarily conserved, but despite many efforts, their physiological roles are largely unexplored. RHBDL4 is a mammalian rhomboid protease localised to the endoplasmic reticulum. It is involved in the development of colorectal cancer, which makes it an important focus of research, but its physiological function is not well understood. In order to explore it, I established and employed a proximity proteomics approach, termed APEX2. It is based on biotinylation of proteins in the spatial proximity of the target in the physiological environment of intact living cells. Labelled proteins are subsequently purified, identified and quantified by mass spectrometry. Exploring the physiological vicinity of RHBDL4, its interaction partners and substrates can be revealed and the detailed subcellular compartment, where RHBDL4 resides, can thus be inferred. During three independent experiments in HCT116 cell line, three proteins emerged repeatedly in the RHBDL4...
Development of inhibitors of rhomboid proteases as tools for the study of their biological functions
Tichá, Anežka ; Stříšovský, Kvido (advisor) ; Šedo, Aleksi (referee) ; Konvalinka, Jan (referee)
Rhomboids are intramembrane serine proteases that belong to the evolutionarily widespread rhomboid superfamily. Rhomboids developed a slightly different catalytic mechanism compared to classical serine proteases; they utilise a catalytic dyad (Ser/His) instead of the common triad (Ser/His/Asp), and the rhomboid active site is buried in the membrane. This, coupled with their hydrophobicity, makes them quite difficult to study. Therefore, even though they are known to be involved in several important biological processes it is still not clear how exactly most of them are involved in the regulation of or in the pathologies of diseases related to these processes (such as malaria, Parkinson's disease or cancer). Our understanding is hindered by the lack of tools for their characterisation both in vitro and in vivo. In my thesis I present new fluorogenic substrates based on the LacYTM2 sequence, which is hydrolysed by several different rhomboid proteases. Using Förster resonance energy transfer (FRET)-based methods, these substrates are suitable for continuous monitoring of rhomboid activity in vitro. Modifications in the P5-P1 residues can improve selectivity for a specific rhomboid, the choice of FRET pair of fluorophores that absorbes light of longer wavelengths makes them suitable for high throughput...
Inhibitors of rhomboid proteases as tools for cell biology
Kuzmík, Ján ; Stříšovský, Kvido (advisor) ; Hlouchová, Klára (referee)
Rhomboid intramembrane serine proteases cleave polypeptide chains within lipid bilayer. Rhomboid proteases were originally discovered in Drosophila melanogaster where they regulate ontogenesis of the fly, but they are present in all domains of life. Nowadays, various diseases, such as malaria, amoebiasis, Parkinson's disease, various tumour malignancies, and diabetes, have been linked with rhomboid proteases. However, natural substrates and function of most rhomboids remain elusive. Cell biology tools are needed for unravelling functions of rhomboids, as well as for potential pharmacological applications, and this together fuels the effort to develop specific rhomboid inhibitors. The inhibitors known to date always bear an electrophilic warhead attacking the nucleophilic serine of the atypical serine-histidine catalytic dyad of rhomboid. From the various developed inhibitors, peptidyl -ketoamides substituted at the ketoamide nitrogen by hydrophobic groups, discovered in our laboratory, hold the biggest potential. They are potent, reversible, selective, tunable, and are built around a pharmacophore already approved for medical use. Here, I set out to improve peptidyl -ketoamides by exploring the chemical space in the active site of rhomboid and testing substituents of the ketoamide nitrogen of increasing...
Proximity proteome of intramembrane serine protease RHBDL4
Boháčová, Šárka ; Stříšovský, Kvido (advisor) ; Brábek, Jan (referee)
Regulated intramembrane proteolysis is an interesting process involved in a multitude of cellular pathways. Enzymes which catalyse this are termed intramembrane proteases (IMPRs), cleaving proteins passing through the membrane within their transmembrane domain. Rhomboid proteases are serine IMPRs. They are widely distributed among organisms and evolutionarily conserved, but despite many efforts, their physiological roles are largely unexplored. RHBDL4 is a mammalian rhomboid protease localised to the endoplasmic reticulum. It is involved in the development of colorectal cancer, which makes it an important focus of research, but its physiological function is not well understood. In order to explore it, I established and employed a proximity proteomics approach, termed APEX2. It is based on biotinylation of proteins in the spatial proximity of the target in the physiological environment of intact living cells. Labelled proteins are subsequently purified, identified and quantified by mass spectrometry. Exploring the physiological vicinity of RHBDL4, its interaction partners and substrates can be revealed and the detailed subcellular compartment, where RHBDL4 resides, can thus be inferred. During three independent experiments in HCT116 cell line, three proteins emerged repeatedly in the RHBDL4...
Development of inhibitors of rhomboid proteases as tools for the study of their biological functions
Tichá, Anežka ; Stříšovský, Kvido (advisor) ; Šedo, Aleksi (referee) ; Konvalinka, Jan (referee)
Rhomboids are intramembrane serine proteases that belong to the evolutionarily widespread rhomboid superfamily. Rhomboids developed a slightly different catalytic mechanism compared to classical serine proteases; they utilise a catalytic dyad (Ser/His) instead of the common triad (Ser/His/Asp), and the rhomboid active site is buried in the membrane. This, coupled with their hydrophobicity, makes them quite difficult to study. Therefore, even though they are known to be involved in several important biological processes it is still not clear how exactly most of them are involved in the regulation of or in the pathologies of diseases related to these processes (such as malaria, Parkinson's disease or cancer). Our understanding is hindered by the lack of tools for their characterisation both in vitro and in vivo. In my thesis I present new fluorogenic substrates based on the LacYTM2 sequence, which is hydrolysed by several different rhomboid proteases. Using Förster resonance energy transfer (FRET)-based methods, these substrates are suitable for continuous monitoring of rhomboid activity in vitro. Modifications in the P5-P1 residues can improve selectivity for a specific rhomboid, the choice of FRET pair of fluorophores that absorbes light of longer wavelengths makes them suitable for high throughput...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.